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Résumé — La diffraction des rayons X en incidence rasante (GIXD) est une technique de caractéri-

sation souvent utilisée dans l’étude de la structure des couches minces. En ce qui concerne les films

organiques, le confinement du film sur le substrat conduit à des structures GIXD anisotropes à deux di-

mensions, telles celles observées pour les films à base de polythiophène utilisés comme couches actives

dans les applications photovoltaiques. D’éventuels dysfonctionnements des détecteurs utilisés peuvent

altérer la qualité des images acquises, affectant ainsi le processus d’analyse et l’information structurelle

qui en est dérivée. Motivés par le succès des Analyses en Composantes Morphologique (MCA) en trai-

tement d’images, nous nous attaquons dans cette étude au problème de la récupération de l’information

manquante dans les images GIXD due à un dysfonctionnement potentiel des détecteurs. Nous montrons

d’abord que les structures géométriques présentes dans les images GIXD peuvent être représentées de

façon parcimonieuse en utilisant une combinaison de transformées redondantes, à savoir la transformée

en curvelets et en ondelettes non-décimée. Ceci permet une description simple et compacte de l’in-

formation contenue dans ces images. Ensuite, l’information manquante est récupérée en appliquant la

MCA dans un cadre d’“inpainting”, en exploitant la représentation parcimonieuse des données GIXD

dans ces deux domaines transformés. L’évaluation expérimentale montre que l’approche proposée est

très efficace pour récupérer les informations manquantes lorsqu’elles sont aléatoirement distribuées sur

les pixels de l’image, ou lorsque des rangées entières sont manquantes, même lorsque la moitié du

nombre total de pixels est affectée. Ce résultat indique que la MCA peut être appliquée pour remédier

aux potentiels problèmes liés à la performance des détecteurs lors de l’acquisition, ce qui est d’une
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grande importance dans les expériences synchrotron, puisque le temps de faisceau alloué aux utilisa-

teurs est extrêmement limité et que toute défaillance technique peut être préjudiciable pour le cours du

projet expérimental. En outre, nos résultats permettent de réduire le temps d’acquisition ou d’éviter la

répétition des mesures, qui donne plus de valeur à l’approche proposée.

Abstract — Grazing incidence X-ray diffraction (GIXD) is a widely used characterization technique,
applied for the investigation of the structure of thin films. As far as organic films are concerned, the
confinement of the film to the substrate results in anisotropic 2-dimensional GIXD patterns, such those
observed for polythiophene-based films, which are used as active layers in photovoltaic applications.
Potential malfunctions of the detectors utilized may distort the quality of the acquired images, affecting
thus the analysis process and the structural information derived. Motivated by the success of Morpho-
logical Component Analysis (MCA) in image processing, in this study we tackle the problem of recov-
ering the missing information in GIXD images due to potential detector’s malfunction. First we show
that the geometrical structures, which are present in the GIXD images can be represented sparsely by
means of a combination of over-complete transforms, namely, the curvelet and the undecimated wavelet
transform, resulting in a simple and compact description of their inherent information content. Then,
the missing information is recovered by applying MCA in an inpainting framework, by exploiting the
sparse representation of GIXD data in these two over-complete transform domains. The experimental
evaluation shows that the proposed approach is highly efficient in recovering the missing information
in the form of either randomly burned pixels, or whole burned rows, even at the order of 50% of the
total number of pixels. Thus, our approach can be applied for healing any potential problems related
to detector performance during acquisition, which is of high importance in synchrotron-based experi-
ments, since the beamtime allocated to users is extremely limited and any technical malfunction could
be detrimental for the course of the experimental project. Moreover, the non-necessity of long acquisi-
tion times or repeating measurements, which stems from our results adds extra value to the proposed
approach.

1 INTRODUCTION

Since the introduction of X-ray diffraction for the investi-

gation of the unit cell of crystals in the beginning of the

20th century, X-rays turned to be an indispensable charac-

terization tool that probes the structure of a wealth of materi-

als, ranging from inorganic crystals and powders to organic

small molecules and polymers, up to proteins and other bi-

ological samples [1, 2]. During the last 20 years, the need

for characterizing the structure of 2-dimensional (2-D) sys-

tems, such as thin films that are of particular interest in

microelectronics and other nanosciences, led to the emer-

gence of grazing incidence X-ray diffraction (GIXD) [3].

GIXD exploits the principles of X-ray diffraction, however

the X-ray beam probes the sample at a very small incident

angle, typically below 1◦, allowing, thus, an effective in-

crease of the penetration depth and, consequently, the in-

teraction of X-rays with a bigger part of the sample. On

top of that, the physical confinement of one side of the film

to the substrate may result in preferentially oriented scatter-

ers that give rise to non-isotropic diffraction patterns. Such

patterns are recorded when studying organic thin films, like

polythiophene-based films, which are extensively used in or-

ganic photovoltaics [4].

In order to acquire and exploit all information contained

in the anisotropic diffraction patterns, 2-D detectors are uti-

lized. Data acquisition is followed by sophisticated data

analysis, which premises the high quality of the recorded

images. For this, synchrotron-based experiments are pre-

ferred, since the high X-ray flux provided in a synchrotron

facility allows for increased signal-to-noise ratio. However,

due to large demand for synchrotron beamtime, the time al-

located to users is extremely limited and the success of the

experiments is imperative. In the quest for an alternative

way of recovering information that is partially recorded in

the GIXD images due to technical problems during the ex-

periment or less acquisition time than the optimum, we turn

to image processing theories.

In image processing, finding an efficient and compact rep-

resentation of the data under consideration is of major im-

portance in several distinct tasks, such as, compression, de-

noising, and restoration, to name a few. In the quest for a

suitable transform, sparsity of the representation was rec-

ognized as a key requirement in seeking simplifying opera-

tions [5, 6]. Specifically, the design of over-complete redun-

dant representations is now at the core of many state-of-the-

art algorithms used in image compression [7], denoising [8],

deconvolution [9], and restoration [10]. In each case, an im-

age is represented as a linear combination of atoms from a

dictionary, where the number of atoms is much larger than

the original image dimension. Due to the redundancy, there
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exist numerous ways to represent the image, with our prefer-

ence being towards the sparsest one, that is, with the fewest

non-zero components as being the simplest.

Focusing on images, another important task is to decom-

pose the data into elementary building blocks. The success-

ful separation of the image content is crucial for its effec-

tive analysis, as well as for tasks, such as, image enhance-

ment, compression, and synthesis. Numerous methods have

been proposed for the solution of the image separation prob-

lem, especially in the frameworks of blind source separation

(BSS) [11] and independent component analysis (ICA) [12].

In addition, the need to recognize structures of different

sizes in a given image, makes it impossible to define a priori

an optimal resolution for analyzing it. Multiresolution de-

composition was introduced as a simple hierarchical frame-

work for interpreting the image information, where at differ-

ent resolutions the details of an image generally characterize

different physical structures.

In this direction, multiscale methods have become pop-

ular image processing tools in the last couple of decades,

especially with the development of wavelets [13]. While the

discrete wavelet transform (DWT) was implemented suc-

cessfully in image compression, the results were far from

optimal for other image processing tasks, such as, decon-

volution, detection and filtering. The dual-tree complex

wavelet transform [14] was introduced as a valuable en-

hancement of the traditional DWT, which is nearly shift in-

variant and, in higher dimensions, it is characterized by di-

rectional selectivity. One of the reasons to focus on the de-

sign of new redundant representations was the need to pre-

serve the shift-invariance property, while also approximat-

ing more closely the continuous analogue.

For this purpose, several novel tailored multiscale and

multidirectional redundant transforms have been introduced

in the literature, including, among others, the undecimated

discrete wavelet transform (UDWT) [15], the curvelet trans-

form [16], the contourlet transform [17] and the bandlet

transform [18]. Most importantly, each of these transforms

adapts to specific characteristics and structures in a given

image, thus, yielding highly sparse representations in the

presence of the corresponding structures, in a non-linear

approximation scheme. For instance, sparse approxima-

tions of piecewise smooth images with point singularities

are obtained using the UDWT, which is efficient in captur-

ing roughly isotropic features. However, this is no longer

optimal in case of piecewise smooth images with singulari-

ties along smooth curves or edges. Such images are approx-

imated more efficiently using the curvelet transform, which

is highly anisotropic and thus exhibits high directional se-

lectivity by defining an adapted multiscale geometry.

Apart from decomposing an image in terms of the physi-

cal size and orientation of its structural content via a multi-

scale transform, natural images are often considered to con-

sist of homogeneous regions and oscillating patterns (e.g.,

texture and noise). In this later case, it is also of high im-

portance to be able to decompose an image into its con-

stituent components. Several methods [19–22] have been

introduced for decomposing a given image into a component

with bounded variation, which holds the geometrical infor-

mation, and an oscillating component, which corresponds to

the textural information. A recent work [23] generalized the

previous approaches providing a method for decomposing

an image in more than two components, while being also

able to handle data corrupted with a linear operator and a

non-necessarily Gaussian noise.

Tackling the decomposition problem from a different per-

spective, the use of sparsity as a desired property to rely on

was recognized earlier [24, 25]. In this framework, morpho-
logical component analysis (MCA) [26] is a recent novel

technique, which exploits the sparse representation of struc-

tured data in large, generally over-complete, transform do-

mains (or dictionaries) to separate them in a set of distinct

components based on their difference in morphology. The

method is based on the assumption that for each morpho-

logical feature to be separated, there exists a suitable trans-

form that enables its reconstruction via a sparse representa-

tion, while this transform is highly inefficient in represent-

ing the other morphological features. For instance, it has

been shown that MCA can be used to separate the texture

from the piecewise smooth component of a given image, by

noticing that the former is characterized well using local co-

sine functions, while the latter may be well represented us-

ing curvelets [27]. The MCA algorithm has been employed

successfully for the analysis of data in several areas, such

as, video analysis [28], astrophysics [29], and medical imag-

ing [30, 31], while it was extended recently in the framework

of image inpainting [32], enabling the treatment of problems

where parts of the image are missing or corrupted.

Motivated by the success of MCA in signal and image

processing, the purpose of this study is to exploit the effec-

tiveness of modern over-complete transforms and extend the

applicability of MCA to the analysis of 2-D GIXD data. To

the best of our knowledge, this is the first study that bridges

the gap between the analysis of diffraction data and state-of-

the-art image processing techniques. More specifically, first

we show that the geometrical structures, which are present in

GIXD images for the specific type of thin films considered in

this study, can be represented efficiently by means of a com-

bination of over-complete transforms, namely, the UDWT

and the curvelet transform, resulting in a simple and com-

pact description of their inherent structures. Then, we tackle

the important problem of recovering the missing informa-

tion in GIXD images, e.g., due to potential malfunction of

the detectors, by applying MCA in an inpainting framework.

The experimental evaluation using high-resolution GIXD

images shows that the proposed approach is highly efficient

in recovering missing information in the form of either ran-

domly burned pixels, or whole burned rows, even at the
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order of 50% of the total number of pixels (which is any-

way an extreme practical scenario). This missing informa-

tion may inhibit the post-processing of GIXD images and

data evaluation. Data analysis is mainly based on reduc-

tion of the 2-D images into 1-D intensity patterns. This is

done either by integrating the diffracted intensity (through-

out the whole image or on specific sectors) or by plotting

the intensity across the meridian and/or the horizon. In case

of missing information due to burned pixels, or inaccurate

statistics related to a small number of measurements due

to reduced acquisition times, incomplete intensity 1-D plots

will be derived. This entails the danger of allowing for data

misinterpretation and derivation of false scientific outcomes,

which are highly sensitive to the form of the intensity pat-

terns. The added value of our approach stems, thus, from its

application in healing potential problems related to detector

performance during image recording. Additionally, MCA

weakens the necessity for long acquisition times or repeat-

ing experiments. All these merits are of high importance

in synchrotron-based experiments, since the beamtime allo-

cated to users is extremely limited and any technical mal-

function could be detrimental for the course of the experi-

mental project.

The rest of the paper is organized as follows: Section 2

provides the principles of GIXD technique, experimental de-

tails on image acquisition and a brief description of the thin

films under study. Section 3 overviews the basic concepts

of MCA applied in the framework of inpainting. Section 4

studies the efficiency of a combination of over-complete re-

dundant transforms, namely, the UDWT and the curvelet

transform, in decomposing the given GIXD images into

their constituent morphological components. Then, an eval-

uation of the performance of MCA, and its comparison with

the performance of classical inpainting methods, in recov-

ering the missing information in the form of individually

burned pixels, or whole burned lines, distributed uniformly

at random over the whole image area, is performed. Finally,

Section 5 concludes and gives directions for future work.

2 GIXD MEASUREMENTS AND MATERIALS UNDER
STUDY

GIXD experiments were performed on the Dutch-Belgian

Beamline (DUBBLE CIG), station BM26B, at the European

Synchrotron Radiation Facility (ESRF), Grenoble, France.

In GIXD, the X-ray beam probes the sample at the grazing

geometry and the diffracted intensity is recorded by a 2-D

position sensitive detector, which is placed after the sample

typically at a distance of around 20−40 cm (Fig. 1(a)). The

energy of the X-rays was 12 eV and the angle of incidence

was set at 0.15◦. The diffracted intensity was recorded by a

Frelon CCD camera and it was normalized by the incident

photon flux and the acquisition time. Each pixel monitors

the intensity as a function of the scattering vector q that is

defined with respect to the center of the incident beam and

has a magnitude of q = (4π/λ) sinθ, where 2θ is the scat-

tering angle and λ is the wavelength of the X-ray beam.

In order to analyze the GIXD data several linecuts are

performed. Usually, the 2-D images are radially averaged

around the centre of the primary beam, which gives the 1-D

plot of the intensity as a function of q. In a second approach,

linecuts across the meridian and/or the horizon are extracted,

which provide the intensity plots across the out-of-plane (qz)
and in-plane (qxy) directions, respectively (Fig. 1(b)). Fi-

nally, azimuthal scans can be performed around a q-range of

special interest, herein at around q = 0.37 Å−1 (the highest

intensity ring apparent in the test images shown in Fig. 2).

In this case, the diffracted intensity is plotted as a function

of the polar angle χ, which is defined with respect to the

normal to the substrate (Fig. 1(b)).

The GIXD images presented herein were collected from

polythiophene-based films. Poly(3-hexyl thiophene), P3HT,

is a semi-conducting polymer that is widely used as a donor

material for the fabrication of organic photovoltaic devices.

For our study, P3HT was blended with [6,6]-phenyl-C61-

butyric acid methyl ester, PCBM, a fullerene-based or-

ganic small molecule, in equal masses in chlorobenzene and

100 nm thick films were spin-coated on indium tin oxide,

ITO, substrates. Two films were prepared and annealed at

160◦C for 10 min (image X1) and 20 min (image X2), re-

spectively, in order to induce small morphological changes

that will result in small changes in the two GIXD images.

We opt to use polythiophene-based films as a case study due

to the non-isotropic features that are apparent in their GIXD

patterns. We note that no discussion on the structural char-

acteristics of the two films will be presented in this work,

since our objective is to stress the potential use of image

processing techniques in physico-chemical applications.

3 IMAGE INPAINTING USING MCA

In this section, the main principles of MCA are introduced in

the framework of image inpainting. Since the performance

of the MCA algorithm relies, and depends highly, on the

degree of sparsity achieved for the analyzed data, we start

by introducing briefly the concept of sparsity in transforms.

Then, the process of decomposing an image in a set of dis-

tinct morphological components by exploiting sparse rep-

resentations will be described, along with the extension of

MCA as a solution to the image inpainting problem.

3.1 Sparse recovery in a transform domain

In the following, we consider for convenience the case of

square N ×N images, although the proposed approach is

extended straightforwardly in the general non-square case.
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(a) GIXD setup: α is the incidence angle, 2θ is the scatter-

ing angle.

(b) Directions of the various linecuts that can be per-

formed for the evaluation of GIXD data.

Figure 1

Schematic of the GIXD setup.

Let X ∈ R
N×N be the given image, T {·} denote a sparsify-

ing transformation, and c ∈ R
L be the vector of transform

coefficients, that is, c = T {X}. Although T {·} can be lin-

ear or non-linear in the general case, however, for computa-

tional and implementation purposes, the linear transforma-

tions are highly promoted for carrying out several signal and

image processing tasks (e.g., restoration, denoising, decon-
volution). Thus, in the subsequent analysis the linear case is

considered. We note the following two remarks concerning

the sparsifying transform:

(i) In case of linearity, both the forward, T {·}, and the

inverse transform, T −1{·}, can be expressed in matrix

form, while the transform coefficients are obtained by

means of simple matrix-vector multiplications.

(ii) In case of an over-complete redundant representation

the number of transform coefficients is larger than the

original image dimension, that is, L> N2.

An image X is said to be K-sparse in the transform do-

main T if the coefficient vector c has exactly K � L non-

zero components. However, in practice a natural image X
is not strictly sparse but compressible, which means that the

magnitude of the re-ordered transform coefficients decays at

a power law,

|cri | ≤Ci−1/δ , i= 1, . . . ,L , (1)

where cri denotes the i-th sorted coefficient, C is a real pos-

itive constant and δ > 0 controls the rate of decay. Thanks

to the rapid decay of their coefficients, compressible images

are well-approximated by K-sparse images, that is, by keep-

ing the K most significant (largest magnitude) coefficients

cri , i= 1, . . . ,K. Following a typical transform coding-based

approach, a way to choose the value ofK is given by keeping

the K transform coefficients, which contain a predetermined

percentage of their total energy. In practice, the value of this

percentage is set in a heuristic way.

In contrast to a complete transform basis, where X has an

exact representation, an over-complete redundant transform

yields several exact representations. In the later case, these

representations are not equally interesting in terms of mod-

eling and feature extraction. In particular, the representation

of X by means of highly sparse coefficient vectors c is pro-

moted, since it usually leads to a more concise and possibly

more interpretable representation of X.

However, selecting the smallest subset of transform ba-

sis functions (also called atoms) from a large redundant set,

which will be combined linearly to reproduce the salient fea-

tures of a given image, is a hard combinatorial problem. In a

formal way, the requirement for obtaining the sparsest rep-

resentation c for a given image X in a transform domain T
is written as follows,

min
c∈RL

‖c‖0 subject to X = T −1{c} , (2)

where ‖c‖0 denotes the �0-pseudo-norm
1 defined as the

number of non-zero elements of the vector c. The difficulty

in addressing (2) is that this optimization problem is highly

non-smooth and non-convex, while it has been also proved

to be NP-hard in terms of computational complexity [33].

On the other hand, the relaxation of (2) by replacing the

�0-pseudo-norm with the �1-norm reduces to a linear pro-

gram, and hence it can be solved in polynomial time,

min
c∈RL

‖c‖1 subject to X = T −1{c} , (3)

where the �1-norm of c is given by ‖c‖1 = ∑Li=1 |ci|. More-

over, it was shown that under certain conditions, the solu-

tions of (2) and (3) are identical [34, 35].

1Despite the fact that �0 is a pseudo-norm, the improper term “norm” is

often used, too.
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Several pursuit algorithms with empirical success have

been proposed for the solution of (3), among them, the

greedy matching pursuit (MP) [36], the basis pursuit
(BP) [37], and their variants. Nevertheless, in applications

involving large data sets, such as, the high-resolution GIXD

images we deal with, MP or BP algorithms are computation-

ally intense.

On the other hand, as discussed in [27], a single basis is

often not well-adapted to large classes of highly structured

data such as “natural images”. Furthermore, over the past

years, new tools have emerged from modern computational

harmonic analysis, such as, wavelets [5], ridgelets [38], and

curvelets [39], to name a few. It is quite tempting to combine

several representations to build a larger dictionary of wave-

forms that will enable the sparse representation of larger

classes of signals.

Morphological Component Analysis (MCA) [26] was in-

troduced recently aiming at decomposing signals in (gener-

ally overcomplete) dictionaries made of a union of bases.

MCA serves as a fast alternative to other algorithms in the

sparsity literature, like the ones mentioned above, where the

solution of the corresponding minimization problem neces-

sitates to deal with unknowns, that is, the sparse coefficient

vectors, living in a high-dimensional space (getting larger as

the dictionaries become more redundant). In contrast, MCA

solves a minimization problem in terms of the morphologi-

cally distinct components directly, whose dimension is less

than or equal to the dimension of the corresponding trans-

formed version. The following sections introduce in brief

the main concepts of MCA, as well as its extension in the

framework of image inpainting, to be exploited for recover-

ing the missing information in our GIXD data due to detec-

tors malfunction.

3.2 Overview of MCA

In the subsequent analysis, we assume that a given image

X is modeled as a linear combination of S images (compo-

nents) with different morphologies, X = ∑Ss=1 Xs. The fun-

damental assumption of MCA is morphological diversity,

which relies on the sparsity of those morphological com-

ponents in specific bases. In other words, MCA is based on

the existence of a set of transforms (or a dictionary of bases)

{T1, . . . ,TS} such that the s-th component Xs is sparsely rep-

resented in Ts, while its representation in the other transform

domains Ts′ , s′ � s, is not sparse. This is ensured with high

probability by an increased incoherence between the distinct

dictionaries. The problem to be solved is the separation of

the linear mixture X into its constituent morphological com-

ponents Xs, relying on the discriminative power of the dis-

tinct transforms Ts, s= 1, . . . ,S.
By extending (3) in the multi-component case, the prob-

lem of recovering the corresponding sparse coefficient vec-

tors {cs ∈ R
Ls}s=1,...,S is expressed as follows,

min
c1,...,cS

S

∑
s=1

‖cs‖1 subject to X =
S

∑
s=1

T −1
s {cs} . (4)

Notice also that, generally, the coefficient vectors cs can be

of different dimension Ls depending on the corresponding

transform. For this reason we also keep denoting a linear

transform as a general operator Ts, instead of using a ma-

trix notation Ts, to avoid any inconvenience due to the po-

tentially different dimensions among the transform coeffi-

cient vectors corresponding to distinct morphological com-

ponents.

The solution of (4) should be expected to give a truly

sparse decomposition if the image X is indeed composed

solely of the morphological components Xs, s = 1, . . . ,S,
and thus it can actually be represented sparsely in terms

of the transforms Ts. However, in a real-world scenario

the assumption of an exact decomposition does not hold in

general. For this purpose, we compensate by reformulat-

ing the constrained optimization problem (4) as an uncon-

strained regularized one. Moreover, the increased memory

and computational costs when we work directly with the co-

efficient vectors cs, whose dimensions can be much higher

than the dimension of the original image in case of highly

redundant transforms, are resolved by solving the optimiza-

tion problem using the morphological components Xs as

the unknowns. The above two considerations result in the

following minimization problem solved by the MCA algo-

rithm [26]:

min
X1,...,XS

S

∑
s=1

∥∥Ts{Xs}
∥∥
1
+ τ

∥∥∥∥X−
S

∑
s=1

Xs
∥∥∥∥
2

2

, (5)

where τ > 0 is a regularization parameter, which controls the

amount of distortion in representing X in terms of the mor-

phological components Xs. This problem has a quadratic

programming structure, for which efficient solvers exist,

with the soft-thresholding being among them as it is de-

scribed in the following section.

3.3 Extending MCA for image inpainting

The MCA algorithm can be easily extended in the frame-

work of image inpainting, where the main requirement is the

preservation of discontinuities (e.g., edges and textures). In

the following, we focus on the case where part of the orig-

inal image information content is missing, in the form of

occluded (“burned”) pixels. Let M be a binary mask, where

zeros indicate that the corresponding pixels in the original

image X have been occluded, while ones indicate valid pix-

els. Then, the observed image captured by the detector can

be expressed as

Xd = M◦X , (6)
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where Xd is the detected, possibly corrupted, image, and ◦
denotes element-by-element multiplication (that is, for two

matrices A, B of the same dimensions we have that [A ◦
B]i j = [A]i j · [B]i j).

The standard optimization problem (5) solved by the

MCA algorithm can be modified easily to account for in-

painting the missing information as follows,

min
X1,...,XS

S

∑
s=1

∥∥Ts{Xs}
∥∥
1
+ τ

∥∥∥∥M◦
(

X−
S

∑
s=1

Xs
)∥∥∥∥

2

2

. (7)

Notice that the inclusion of the binary mask M in the above

objective function to be minimized prevents the sparse

model we try to build from attempting to consider the in-

valid (missing) data. A solution to the optimization prob-

lem (7) can be obtained by employing the same iterative

thresholding strategy as in the MCA algorithm. In partic-

ular, the block-coordinate relaxation method [41] is used. It

is a fast numerical technique, which requires only the use of

matrix-vector multiplications due to the linear assumption

for the sparsifying transformations.

Regarding the choice of the regularization parameter τ,
which is also employed by the soft-thresholding operator

used in the solution of (7), one solution is based on the fol-

lowing observation. At the early stages of the algorithm’s

execution, the estimation of the individual morphological

components may be inaccurate because of the missing data.

To overcome this drawback, one has to start by considering

a large value of τ in order to favor the data fidelity term (sec-

ond term in (7)). The appropriate initialization of τ is done

in a rather heuristic way, with its value affecting the speed of

convergence. In the present implementation, it is expressed

as the minimum of maximal amplitude coefficients of the

recorded image in each sparsifying transform domain. Then,

the value of τ is decreased monotonically (e.g., according to

a linear or an exponential strategy as we employ here) in or-

der to favor the sparsity-enforcing term (first term in (7)).

Moreover, τ is updated as a function of the estimated noise

standard deviation (e.g., by employing a median absolute
deviation (MAD) estimator) so as to reject noise. Algo-

rithm 1 summarizes the main steps of MCA and gives the

expressions for the regularization parameter τ and its updat-

ing rule for solving the inpainting problem expressed by (7).

Concerning the convergence of this algorithm, MCA for

image inpainting is based on an iterative thresholding pro-

cess, as in the original MCA algorithm which has been

proven to converge [26, 42]. As far as inpainting is con-

cerned, the presence of the mask makes things not to be

straightforward anymore. In [32], a sketch of a proof for the

convergence of MCA in case of inpainting, along with the

role and the effect of the mask, is provided. However, we

emphasize that convergence here means that the sequence

of iterates for the recovery of the individual morphologi-

cal components converges, but there is not a guarantee on

the properties of the minimizer with respect to the true sig-

Algorithm 1 MCA for image inpainting

Require: Maximum iterations Imax, initial threshold τ(0)

Initialize: residual r(0) = 0, morphological components

{X(0)
s = 0}Ss=1

Set: λ =
( λmax

λstop·σn
) 1

1−Imax ,

where λmax = minmaxs=1,...,S |Ts{Xd}|, λstop a constant

depending on the noise level (set to a small value e.g.,
10−6 in the noiseless case, and between 3 and 5 for noisy

images), σn the estimated noise standard deviation (e.g.,
using MAD)

while τ(t) > τmin do
// Execute the following iteration to estimate each
// component Xs at iteration t by assuming all the
// others {Xk}Sk=1,k�s are fixed:
for s= 1, . . . ,S do
- Update residual:

r(t) = Xd−∑Sk=1 X(t−1)
k

- Estimate current transform coefficients c(t)
s and apply

soft-thresholding with threshold τ(t):

c(t)
s = Δτ(t)

(
Ts{M◦ r(t) +X(t−1)

s })
- Update morphological component from the selected

transform coefficients:

X(t)
s = T −1

s {c(t)
s }

end for
- Update threshold using an exponential decay rule:

τ(t) = τ(t−1) ·λ
end while

∗ Soft thresholding operator: Δτ(c) =

{
0 , c< τ
c− τ · sign(c) , c≥ τ.

nal. In fact, the recovery guarantees of MCA for inpainting

is a very important theoretical problem that remains largely

open.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency of the MCA

framework for the recovery of missing information in high-

resolution GIXD images, and subsequently, for the analysis

of 1-D intensity patterns (linecuts), which are of interest for

characterizing the structure of thin films. More specifically,

our test set consists of two 2048× 2048 GIXD images, X1

and X2, shown in Fig. 2, whose acquisition details were de-

scribed in Section 2.

As already stated, the analysis of GIXD data is based on

the reduction of the 2-D images into 1-D intensity patterns.

From the several linecuts mentioned in Section 2, herein we

focus on three distinct types of linecuts (Fig. 1(b)):

1. Intensity as a function of the scattering vector q (I vs. q)

2. Intensity as a function of the out-of-plane component

of the scattering vector (I vs. qz)
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3. Intensity as a function of the polar angle (I vs. χ)

It is noted that in the subsequent experimental evaluation

we ignore the part at the bottom of the GIXD images that

corresponds to the shadow of the film substrate, since the

intensity recorded in this area is not diffracted from the film

under study.

The performance of MCA2 is evaluated in the case of cor-

rupted GIXD images. In particular, the simulated missing

information appears in the form of either randomly burned

pixels, or whole burned rows distributed also at random

across the whole image. For this purpose, two types of ran-

dom binary masks are generated, namely,

– Random mask (MRM): matrix whose elements are equal

to 1, except for a subset of them being 0, whose positions

are distributed uniformly at random.

– Random lines mask (MRLM): matrix whose elements are

equal to 1, except for a subset of rows consisting of all-

zero elements, with the indices of these “burned” rows

being selected uniformly at random among all the rows of

the original image.

Under this assumption, an observed corrupted GIXD image

X can be expressed as follows, depending on the corruption

pattern,

Xd,RM = MRM ◦X , Xd,RLM = MRLM ◦X , (8)

where Xd,RM and Xd,RLM are the recorded images with ran-

domly missing pixels and whole rows, respectively. In the

subsequent experiments, we generate random masks of the

above two types with the number of missing pixels varying

in {20%, 30%, 40%, 50%} as a percentage of the total num-

ber of pixels. In practice, the case of randomly distributed

burned lines appears in case of 2-D detectors based on wire

chambers [40], while the case of randomly burned pixels is

met in more modern acquisition systems, such as CCD cam-

eras.

Fig. 3 shows corrupted instances for both images, X1 and

X2, where the top row corresponds to a random mask with

50% of missing information, while the bottom row corre-

sponds to a random lines mask, also with 50% of burned

pixels. In our case, a successful inpainting of the observed

GIXD images using MCA, is equivalent to recovering accu-

rately the missing information such that the associated line-

cuts, estimated from the reconstructed images, to be close

approximations of the linecuts corresponding to the original

images. Although an amount of 40% or 50% of missing pix-

els is considered an extreme scenario in practice, however,

we validate the efficiency of MCA even under such immod-

erate conditions.

2Matlab code available at: http://www.greyc.ensicaen.fr/~jfadili/demos/

WaveRestore/downloads/mcalab/Home.html

4.1 Morphological components using UDWT and
curvelets

As mentioned in Section 3.2, the morphological diversity

relies on the sparsity of the distinct morphological com-

ponents in specific bases. The appropriate choice of these

bases, or in general the sparsifying transform domains, is

highly determined by the specific structural content of a

given image. For instance, the discrete cosine transform

(DCT) is appropriate in describing spatially homogeneous

texture, while the local ridgelet transform [38] is efficient in

describing lines of fixed size. On the other hand, for im-

ages containing isotropic features and piecewise smooth re-

gions, the UDWT has been shown to provide a very pre-

cise description [15], while anisotropic curvilinear struc-

tures have been shown to be represented optimally sparsely

by the curvelet transform [16].

A visual inspection of the GIXD images used in this

study, shown in Fig. 2, implies that none of the above trans-

forms alone will be capable of extracting the geometric

structures of these images. In contrast, we observe that the

recorded images are characterized by both piecewise smooth

regions and curvilinear structures. This necessitates the use

of a combination of transforms to represent GIXD images

for this type of thin films in a sparse way. This first ob-

servation induces the combination of the UDWT and the

curvelet transform to be a suitable choice. Moreover, we

emphasize that the success of the MCA technique is based

on the degree of incoherence between the distinct sparsify-

ing transforms [26] (the s-th morphological component Xs
is sparsely represented in Ts, while its representation in the

other transform domains is not sparse). The requirement of

incoherence holds for the {UDWT, curvelet transform} pair,

as it is proved in [44] (ref. Lemma 3.3 and discussion in

Section 3.5). This serves as a second strong motivation for

the selection of this pair of transforms.

Unlike the DWT, which decomposes a given image at

multiple scales by downsampling the approximation and de-

tail coefficients at each decomposition level, the UDWT

does not incorporate the downsampling operations. Thus,

the approximation and detail coefficients at each level have

the same dimension as the original image. Besides, unlike

the DWT, the UDWT is shift-invariant, while it is also more

robust to ringing artifacts around singularities or edges.

On the other hand, the curvelet transform, to be used for

the extraction of the anisotropic structures (curves, lines),

is a special member of the family of multiscale geometric

transforms. Conceptually, the curvelet transform is a mul-

tiscale pyramid with many directions (angles) and locations

at each length scale, and needle-shaped elements (atoms)

at fine scales. More specifically, curvelets, in addition to a

variable width (w), have also a variable length (l) and so a

variable anisotropy. The length and width at fine scales are

related by a scaling law, w = l2 and thus the anisotropy in-

creases with decreasing scale like a power law.
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Figure 2

Original high-resolution 2048×2048 GIXD images.

It has been shown [6, 16] that curvelets address effi-

ciently problems where wavelets are far from ideal. For

instance, they provide optimally sparse representations of

objects which are characterized by smoothness except for

discontinuities along a general curve with bounded cur-

vature. Moreover, they model faithfully the geometry of

wave propagation-like structures, since they may be viewed

as coherent waveforms with enough frequency localization

so that they behave like waves but at the same time, with

enough spatial localization so that they simultaneously be-

have like particles. GIXD images of the kind used in this

study (ref. Fig. 2) present both characteristics, that is, curvi-

linear structures, as well as a wave propagation-like behav-

ior, thus motivating the use of the curvelet transform for the

analysis of the corresponding morphological component.

In the following, we test the effectiveness of MCA in de-

composing the given GIXD images into their morphological

components. More specifically, the parameters required by

Algorithm 1 are set as follows: Imax = 150, λstop = 10−6,

and τ(0) = λmax, where λmax is the minimum of maximal

amplitude coefficients of the recorded image in each sparsi-

fying transform domain. Regarding the UDWT, each image

is analyzed in 3 scales using the “Symlet 6” (sym6) wavelet,

which is near symmetric, orthogonal, and bi-orthogonal.

Moreover, the spread and the oscillating nature of the as-

sociated scaling and wavelet functions, respectively, are ap-

propriate enough to analyze images with relatively piece-

wise smooth content, such as the GIXD images under study.

Regarding the curvelet transform, each GIXD image is de-

composed in 7 scales, where the number of angles for

each scale, from the coarsest to the finest one, is equal to

1, 16, 32, 32, 64, 64, 128, respectively. For the above ex-

perimental setup, and for the specific implementations we

used here, the redundancy factor (i.e., the ratio of the num-

ber of transform coefficients over the number of pixels) for

the UDWT is equal to 3, while for the curvelet transform the

redundancy factor is equal to 2.3.

Fig. 4 shows the morphological decomposition of X1 and

X2 in the two distinct components. A visual inspection of

both images verifies that UDWT is indeed capable of repre-

senting the isotropic, piecewise smooth regions, whereas the

curvelets approximate anisotropic features, such as the arcs

and the edges, which appear in both images.

As mentioned above, apart from the mutual incoherence

of the (possibly over-complete redundant) transforms, the

second key ingredient required for MCA to work properly,

is their ability to represent the information content of a given

image in a precise and compact form. This is indeed the case

with the UDWT and the curvelet transform when they are

applied on the given GIXD images. More precisely, for the

image X1, 50% of UDWT coefficients contains the 82% of

the total energy (the sum of the absolute values of the trans-

form coefficients), while 96% of the total energy is com-

pressed in the 25% of the most significant (of highest mag-

nitude) curvelet coefficients. A similar behavior is observed

for the image X2, where 50% of the UDWT coefficients con-

tains the 81% of the total energy, while 25% of the curvelet

coefficients corresponds to 94% of their total energy.

4.2 Approximation accuracy of the original linecuts

The primary objective of this study is the MCA inpainting

of corrupted GIXD images, with the goal of approximating

as accurately as possible the original diffracted intensity, ex-

pressed in terms of the three linecuts introduced in Section 2.
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(a) (b)

(c) (d)

Figure 3

High-resolution 2048×2048 GIXD images with 50% of missing pixels masked with: i) a random mask with uniformly distributed burned pixels

[top row], ii) a random mask with uniformly distributed burned lines [bottom row].

 X1: UDWT component  X1: Curvelet component

(a) MCA decomposition of X1.

 X2: UDWT component  X2: Curvelet component

(b) MCA decomposition of X2.

Figure 4

Analysis of X1 and X2 in two morphological components using the UDWT and the curvelet transform.
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Although MCA is designed in a sparsity-based frame-

work, solving a sparse optimization problem in suitable

transform domains, however, for completeness of presen-

tation its performance is compared with two classical in-

painting techniques, namely, the method of Fields of Experts
(FoE) [45] and a partial differential equations-based (PDE)

approach [46]. In the former case, expressive image pri-

ors that capture the statistics of natural scenes are learned,

extending traditional Markov Random Field (MRF) models

by learning potential functions over extended pixel neigh-

borhoods. In the later case, the lost information is restored

guided by the anisotropic diffusion principle and the con-

nectivity principle of human visual perception. Specifically,

a fourth-order PDE model allows for the transportation of

available information from the exterior towards the interior

of the inpainting domain and the simultaneous diffusion of

the information inside the inpainting region.

Starting with the efficiency of MCA in inpainting GIXD

images corrupted by a random mask, Fig. 5 shows the in-

painted X1 and X2 images corresponding to the two extreme

cases of our experimental setup, that is, for 20% and 50% of

randomly burned pixels. As it can be seen, the performance

of MCA is excellent, even for 50% of missing information,

which is a rather immoderate practical scenario. Comparing

the inpainted images with their original versions, shown in

Fig. 2, we observe that the smooth regions in X1 are pre-

served, while the noise-like appearance of X2 is suppressed

slightly in its two inpainted counterparts. This is mainly due

to an internal soft-thresholding step used by MCA, which

tends to moderate the noise-like features.

Fig. 6 presents the corresponding linecuts (I vs. q, I vs. qz,
I vs. χ) for X1 and X2, comparing the original curves with

the curves obtained from the inpainted images. In case of

X1, the approximation of all three original linecuts is al-

most perfect, even for high percentages of corrupted pixels.

The reconstruction performance for X2 is also very high,

except for the extreme case at which half of the information

is missing. In that case, small deviations from the original

curves are apparent (for instance, in the rightmost part of

the I vs. χ linecut in Fig. 6(b)). The above observations ini-

tially derived by visual inspection of the curves in Fig. 6 are

verified numerically by computing the Mean Squared Rela-

tive approximation Error (MSRE) between the original and

reconstructed linecuts, as follows,

MSRE(l̂, ltrue) = mean

((
l̂− ltrue

ltrue

)2
)

, (9)

where ltrue is the original and l̂ the corresponding recon-

structed linecut.

Table 1 shows the MSRE (%) for the two GIXD images,

along with the associated standard deviation of the approx-

imation errors for MCA, FoE, and PDE methods. The ap-

proximation accuracy is extremely high, especially for the

smoother image X1, while, as we expected, it decreases

slightly as the number of missing pixels increases. More-

over, MCA clearly outperforms the other two inpainting

methods in most of the cases (the minimum MSRE values

are shown in bold type). In particular, the PDE approach

for inpainting GIXD images of the type studied here results

in the worst performance. This is not surprising, since the

diffusion operation, which is inherent in every PDE-based

method, tends to smooth out the interiors of the inpainted

regions. This smoothing effect may detract the noise-like

structures of our GIXD images, thus yielding less accurate

linecuts. An additional advantage of MCA, when compared

with FoE and PDE, is that, apart from restoring the lost in-

formation of a given image, it also gives the decomposition

into its morphological components as a byproduct. As men-

tioned above, this decomposition can be further employed

to extract structural information from GIXD data. For in-

stance, a difference in the curvilinear structures correspond-

ing to the two different annealing temperatures is apparent

by a simple visual inspection of the curvelet components of

X1 and X2 (ref. Fig. 4).

As a second experiment, we evaluate the efficiency of

MCA when whole lines of burned pixels are distributed ran-

domly in the recorded GIXD image. Fig. 7 shows the in-

painted X1 and X2 images for 20% and 50% of burned pix-

els across randomly distributed lines. As in the previous sce-

nario of uniformly random burned pixels, the performance

of MCA is again very high, even for 50% of missing infor-

mation. Comparing the inpainted images with their original

counterparts in Fig. 2, we can see that the noise-like appear-

ance of X2 is suppressed in the two inpainted images. The

smoothing effect of MCA for the specific combination of

sparsifying transforms we employ here (UDWT, curvelets)

is more prevalent in the darker area at the bottom of the in-

painted images (Fig. 7(b)). However, this is not a constraint,

since, as mentioned at the beginning of this section, the dark

area is ignored during the computation of the linecuts.

Fig. 8 shows the corresponding linecuts for X1 and X2,

comparing the original curves with the curves obtained from

the inpainted images. As an overall conclusion, we can say

that the approximation is highly accurate, especially for the

first two linecuts (I vs. q and I vs. qz), while it diminishes

slightly as the percentage of missing pixels increases. We

observe that the I vs. χ linecut presents the highest sen-

sitivity with respect to the amount of missing information,

which is more apparent near the peak and in the tails of the

intensity curves for both images. In fact, the peak corre-

sponds to the integrated intensity of the pixels around col-

umn 1680 between rows 630− 670, while the tail corre-

sponds to the integrated intensity around row 440 between

columns 1440−1460 (Fig. 2). A close inspection of the ran-

domly masked images shown in Figs. 3(c)-3(d) reveals that

there is a large amount of missing pixels, effectively greater

than 50%, concentrated in the corresponding areas. This in-

hibits the inpainting of the images in these specific areas,
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resulting in an increased approximation error.

The above observations are consistent with the entries

of Table 2, which compares the corresponding MSRE (%)

values for the two GIXD images, along with the associ-

ated standard deviation of the approximation errors, for the

MCA, FoE, and PDE inpainting methods. As in the case

of randomly burned pixels, the approximation accuracy is

extremely high, especially for the smoother image X1 and

for the first two linecuts, while, as we expected, it decreases

slightly as the number of missing pixels increases. More-

over, we can see that MCA achieves a more accurate recon-

struction of the linecuts in most of the cases, when compared

with FoE and PDE, while its performance is very close to

FoE and PDE for the cases where they resulted in a lower

MSRE. Finally, by comparing the corresponding entries in

Table 1 and Table 2 we conclude that inpainting GIXD im-

ages in case of randomly missing lines is more demanding

than inpainting when randomly distributed pixels are miss-

ing. Focusing on MCA, as we suggest in the next section,

this reduction in reconstruction accuracy can be alleviated

by incorporating additional sparsifying transforms, such as

the ridgelet transform, which is more efficient in extracting

meaningful information from the neighboring pixels across

straight lines and edges. This is another important advan-

tage of MCA, that is, the ability to improve the inpainting

accuracy by incorporating more efficient sparsifying trans-

formations, which are able to extract additional structural

components. On the other hand, such an improvement is

impossible with methods like FoE or PDE.

5 CONCLUSIONS AND FUTURE WORK

In this study, we exploited the efficiency of the recently

introduced MCA algorithm for the decomposition of im-

ages in distinct morphological components, based on the

achieved sparsity in appropriate over-complete redundant

transform domains, with our objective being to solve the

problem of recovering the missing information in corrupted

GIXD images due to potential malfunction of the detectors.

The experimental evaluation using high-resolution GIXD

images of thin polythiophene-based films, showed that the

proposed approach is highly efficient in recovering the miss-

ing information in the form of either randomly burned pix-

els, or whole burned rows, even at the order of 50% of the

total number of pixels. This led to the derivation of accurate

intensity 1-D plots (linecuts) from the recovered inpainted

images, that will later allow for correct data interpretation.

This result can be of high impact in scattering and imaging

techniques applied for materials characterization, since it in-

dicates that the proposed MCA-based inpainting approach

weakens the necessity for long acquisition times or repeating

experiments, especially in synchrotron-based experiments,

related to inferior detector performance during the acquisi-

tion process.

In the present work, we employed the UDWT and the

curvelet transform as the most appropriate domains for the

representation of the isotropic, as well as the anisotropic fea-

tures, which appear in GIXD data. However, the experimen-

tal evaluation showed a smoothing effect when a GIXD im-

age presents noise-like features, which may decrease the es-

timation accuracy of the corresponding linecuts. We expect

that the inclusion of additional transforms to capture more

features, such as the noiselet, the ridgelet or the recently in-

troduced shearlet transform [47], which best suit noise-like

features and edges, respectively, will improve the inpainting

performance, and subsequently the more accurate extraction

of the linecuts that are of interest to us. Moreover, in all

these cases, the sparsifying transforms are fixed. However,

recent works have shown that, instead of deploying a prede-

fined set of transforms, the use of learned sparsifying dictio-

naries [7, 8], which adapt to the inherent image structures,

often result in a superior reconstruction performance. Thus,

the extension of the MCA inpainting framework in a joint

dictionary learning and reconstruction framework would be

also of great importance.
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TABLE 1

Mean Squared Relative approximation Error (MSRE) (%) between the original and reconstructed linecuts, using MCA, FoE, and PDE inpainting methods,

for images X1, X2 with randomly distributed missing pixels (the standard deviation of the error is shown in parentheses).

X1

Linecut
Missing pixels (%)

Method 20% 30% 40% 50%

I vs. q

MCA 3.35 ·10−5 5.24 ·10−5 1.25 ·10−4 5.45 ·10−4

(7.46 ·10−5) (1.17 ·10−4) (2.75 ·10−4) (0.0012)
FoE 7.89 ·10−4 4.12 ·10−4 0.0011 0.0012

(9.27 ·10−4) (0.0031) (0.0020) (0.0034)
PDE 3.38 ·10−4 3.55 ·10−4 5.14 ·10−4 0.0015

(7.04 ·10−4) (7.47 ·10−4) (0.0011) (0.0031)

I vs. qz

MCA 0.0020 0.0031 0.0080 0.0375
(0.0045) (0.0074) (0.0186) (0.0689)

FoE 0.0281 0.0342 0.0412 0.0435
(0.0511) (0.0610) (0.0752) (0.0771)

PDE 0.0268 0.0277 0.0339 0.0890
(0.0471) (0.0501) (0.0612) (0.1610)

I vs. χ

MCA 1.32 ·10−4 2.50 ·10−4 6.03 ·10−4 0.0589
(1.57 ·10−4) (3.83 ·10−4) (7.62 ·10−4) (0.7151)

FoE 0.0490 0.0520 0.0591 0.0712
(0.7100) (0.7290) (0.7311) (0.7500)

PDE 0.0587 0.0610 0.0640 0.1671
(0.7300) (0.7320) (0.7501) (1.5100)

X2

Linecut
Missing pixels (%)

Method 20% 30% 40% 50%

I vs. q

MCA 0.0019 0.0061 0.0028 0.0047
(0.0049) (0.0083) (0.0084) (0.013)

FoE 0.0024 0.0026 0.0031 0.0039
(0.0065) (0.0071) (0.0058) (0.0056)

PDE 0.0020 0.0039 0.0029 0.0065
(0.0050) (0.0052) (0.0077) (0.0202)

I vs. qz

MCA 0.0880 0.0951 0.1183 0.2035
(0.1622) (0.1683) (0.2247) (0.36)

FoE 0.0943 0.0962 0.1120 0.2398
(0.1722) (0.1734) (0.1670) (0.1642)

PDE 0.0885 0.0926 0.1123 0.2875
(0.1622) (0.1752) (0.2051) (0.8968)

I vs. χ

MCA 0.0569 0.0584 0.0572 0.0811
(0.4892) (0.4686) (0.4725) (0.5854)

FoE 0.0572 0.0593 0.0669 0.0905
(0.4892) (0.4922) (0.4902) (0.4706)

PDE 0.0601 0.0625 0.0634 0.1329
(0.4892) (0.4967) (0.5224) (1.0618)
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TABLE 2

Mean Squared Relative approximation Error (MSRE) (%) between the original and reconstructed linecuts, using MCA, FoE, and PDE inpainting methods,

for images X1, X2 with missing pixels across randomly distributed lines (the standard deviation of the error is shown in parentheses).

X1

Linecut
Missing pixels (%)

Method 20% 30% 40% 50%

I vs. q

MCA 5.36 ·10−4 7.41 ·10−4 8.32 ·10−4 0.0140
(0.0011) (0.0015) (0.0019) (0.0500)

FoE 4.47 ·10−4 7.40 ·10−4 7.79 ·10−4 0.0450
(0.0024) (0.0018) (0.0015) (0.0400)

PDE 5.39 ·10−4 6.60 ·10−4 0.0011 0.0153
(0.0010) (0.0012) (0.0023) (0.0271)

I vs. qz

MCA 0.0315 0.0467 0.0623 0.1918
(0.0651) (0.0950) (0.1412) (0.6474)

FoE 0.0395 0.0420 0.0662 0.3001
(0.0700) (0.0610) (0.0753) (0.7211)

PDE 0.0321 0.0492 0.0818 0.2351
(0.0573) (0.1189) (0.2072) (0.6798)

I vs. χ

MCA 0.0381 0.0604 0.0619 1.6500
(0.3704) (0.7219) (0.7308) (1.3207)

FoE 0.0510 0.0590 0.0632 1.2900
(0.7220) (0.7310) (0.7401) (0.9812)

PDE 0.0662 0.0712 0.0740 2.4521
(0.5614) (0.7318) (0.7301) (2.9019)

X2

Linecut
Missing pixels (%)

Method 20% 30% 40% 50%

I vs. q

MCA 0.0025 0.0032 0.0040 0.0185
(0.0065) (0.0078) (0.011) (0.0977)

FoE 0.0023 0.0033 0.0039 0.0219
(0.0064) (0.0058) (0.0056) (0.0067)

PDE 0.0027 0.0033 0.0056 0.0372
(0.0075) (0.0073) (0.0136) (0.1010)

I vs. qz

MCA 0.0987 0.1315 0.1525 0.3518
(0.1924) (0.2852) (0.3030) (1.48)

FoE 0.0994 0.1199 0.1483 0.3702
(0.1744) (0.1676) (0.1658) (0.1643)

PDE 0.1027 0.1357 0.1977 0.3826
(0.2577) (0.7375) (0.4981) (1.2608)

I vs. χ

MCA 0.0616 0.2303 0.6640 0.9388
(0.88) (0.5817) (1.5218) (1.511)

FoE 0.0688 0.2287 0.7431 1.1042
(0.4897) (0.4894) (0.5102) (0.4912)

PDE 0.0678 0.2073 0.7588 1.2207
(0.4891) (0.7357) (1.3044) (1.2608)
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(a) X1 inpainted (random mask)

(b) X2 inpainted (random mask)

Figure 5

Inpainted images X1, X2 using MCA for randomly distributed missing pixels (20%, 50%).
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(a) X1 linecuts

(b) X2 linecuts

Figure 6

Linecuts of the original and inpainted (using MCA) GIXD images X1, X2 for randomly distributed missing pixels.
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(a) X1 inpainted (random lines mask)

(b) X2 inpainted (random lines mask)

Figure 7

Inpainted images X1, X2 using MCA for randomly distributed lines of missing pixels (20%, 50%).
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(a) X1 linecuts

(b) X2 linecuts

Figure 8

Linecuts of the original and inpainted (using MCA) GIXD images X1, X2 for randomly distributed lines of missing pixels.


